A Family of Rectangular Mixed Elements with a Continuous Flux for Second Order Elliptic Problems

نویسندگان

  • Todd Arbogast
  • Mary F. Wheeler
چکیده

We present a family of mixed finite element spaces for second order elliptic equations in two and three space dimensions. Our spaces approximate the vector flux by a continuous function. Our spaces generalize certain spaces used for approximation of Stokes problems. The finite element method incorporates projections of the Dirichlet data and certain low order terms. The method is locally conservative on the average. Suboptimal convergence is proven and demonstrated numerically. The key result is to construct a flux π-projection operator that is bounded in the Sobolev space H1, preserves a projection of the divergence, and approximates optimally. Moreover, the corresponding Raviart–Thomas flux preserving π-projection operator is an L2-projection when restricted to this family of spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Development of Multigrid Algorithms for Mixed and Nonconforming Methods for Second Order Elliptic Problems

Multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements are considered. The construction of several coarse-tone intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed nite element methods with and without projection of the co...

متن کامل

The Analysis of Multigrid Algorithms for Nonconforming and Mixed Methods for Second Order Elliptic Problems

In this paper we consider multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements. We prove optimal convergence properties of the W-cycle multigrid algorithm and uniform condition number estimates for the variable V-cycle preconditioner. Lower order terms are treated, so our results also apply to parabo...

متن کامل

On the Implementation of Mixed Methods as Nonconforming Methods for Second-order Elliptic Problems

In this paper we show that mixed finite element methods for a fairly general second-order elliptic problem with variable coefficients can be given a nonmixed formulation. (Lower-order terms are treated, so our results apply also to parabolic equations.) We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection fini...

متن کامل

A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter all...

متن کامل

On the Implementation of Mixed Methodsas Nonconforming Methodsfor Second Order Elliptic

In this paper we show that mixed nite element methods for a fairly general second order elliptic problem with variable coeecients can be given a non-mixed formulation. (Lower order terms are treated, so our results apply also to parabolic equations.) We deene an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection nite ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2005